Modulating leidenfrost-like prompt jumping of sessile droplets using microstructured surfaces
ID:5
Submission ID:4 View Protection:ATTENDEE
Updated Time:2024-10-14 11:03:29
Hits:284
Oral Presentation
Abstract
The Leidenfrost effect, namely the levitation and hovering of liquid drops on hot solid surfaces, generally requires a sufficiently high substrate temperature to activate the intense liquid vaporization. Here we report the agile modulations of Leidenfrost-like prompt jumping of sessile water microdroplets on micropillared surfaces at a remarkably mitigated temperature. Compared to traditional Leidenfrost effect occurring above 230 °C, the fin-array-like micropillars enables Wenzel-state water microdroplets to levitate and jump off within 1.33 ms at a markedly low temperature of 130 °C by triggering the inertia-controlled growth of individual vapor bubbles at the droplet base. We demonstrate that droplet jumping, resulting from the momentum interactions between the expanding vapor bubble and the droplet, can be deftly modulated by simply tailoring the thermal boundary layer thickness via pillar heights, which acts to regulate the bubble expansion between the inertia-controlled mode and the heat-transfer-limited mode. Intriguingly, the two bubble growth modes give rise to distinct droplet jumping behaviors characterized by constant velocity and constant energy schemes, respectively. This heating strategy allows the facile purging of wetting liquid drops on rough or structured surfaces in a controlled manner, inspiring promising applications in rapid removal of fouling media, even when settled in surface cavities.
Keywords
Leidenfrost effect,Microstructure,Liquid cooling,Droplet
Submission Author
Lei Zhao
Dalian University of Technology
Comment submit