Three element coupling biomimetic durable superhydrophobic surface based on femtosecond laser
ID:93
Submission ID:97 View Protection:ATTENDEE
Updated Time:2024-10-13 22:18:22
Hits:328
Oral Presentation
Abstract
Aluminum alloy superhydrophobic surface has various applications in aerospace, marine engineering, and other fields. Inadequate mechanical durability hinders its industrial application. In this article, we use the femtosecond laser to prepare the robust aluminum alloy superhydrophobic surface. The robust aluminum alloy superhydrophobic surface is inspired by multi-bioinspired and multi-scale structures. The robust aluminum alloy superhydrophobic surface is designed with the millimeter-level honeycomb structure, the micrometer-level beetle prothorax pit structure, the micrometer-level octopus sucker structure, and the nanometer-level coral-like structure. Benefiting from these structures, the obtained robust aluminum alloy superhydrophobic surface has favorable superhydrophobicity (contact angle ≈ 160 °, rolling angle ≈ 3 °) and mechanical durability. The octopus sucker and the coral-like structure maintain their structural integrity after being rubbed 200 times with 600 grit sandpaper, being impacted with 200 g of aluminum pellets and being peeled off 400 times of tape. The robust aluminum alloy superhydrophobic surface still maintain superhydrophobicity after being rubbed 200 times with 600 grit sandpaper, being impacted with 200 g of aluminum pellets and being peeled off 400 times of tape. In this article, the robust aluminum alloy superhydrophobic surface prepared by femtosecond laser is used to broaden the application of aluminum alloy superhydrophobic surface in industry. Furthermore, this article investigates the impact of different process parameters of the femtosecond laser on the height of the octopus sucker, the contact angle, and the rolling angle, such as power, scanning speed and number of scans.
Keywords
Robust aluminum alloy superhydrophobic surface, mechanical durability, multi‐bioinspired, multi-scale structure, femtosecond laser
Submission Author
Xueye Chen
Ludong University
Xinkun Chen
College of Transportation, Ludong University
Comment submit